MC74ACT564

Octal D-Type Flip-Flop with 3-State Outputs1

The MC74ACT564 is a high-speed, low power octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable (OE).

The information presented to the D inputs is stored in the flip-flops on the LOW-to-HIGH Clock (CP) transition.

The MC74ACT564 device is functionally indentical to the MC74ACT574, but with inverted outputs.

- Inputs and Outputs on the Opposite Sides of the Package Allowing Easy Interface with Microprocessors
- Useful as Input or Output Port for Microprocessor
- Functionally Indentical to the MC74ACT574 but with Inverted Outputs
- 3-State Outputs for Bus-Oriented Applications
- Outputs Source/Sink 24 mA
- TTL Compatible Inputs

ORDERING INFORMATION

Device	Package	Shipping
MC74ACT564N	PDIP-20	18 Units/Rail
MC74ACT564DW	SOIC-20	38 Units/Rail
MC74ACT564DWR2	SOIC-20	1000 Tape \& Reel
MC74ACT564DT	TSSOP-20	75 Units/Rail
MC74ACT564DTR2	TSSOP-20	2500 Tape \& Reel

Figure 1．Pinout：20－Lead Packages Conductors
（Top View）

PIN ASSIGNMENT

PIN	FUNCTION
$D_{0}-D_{7}$	Data Inputs
$C P$	Clock Pulse Input
$\overline{\mathrm{OE}}$	3－State Output Enable Input
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}$	3－State Outputs

Figure 2．Logic Symbol

Figure 3．Logic Diagram
FUNCTION TABLE

Inputs			Internal	Outputs	Function
$\overline{\mathrm{OE}}$	CP	D	Q	0	
H	H	L	NC	Z	Hold
H	H	H	NC	Z	Hold
H	」	L	H	Z	Load
H	」	H	L	Z	Load
L	」	L	H	H	Data Available
L	」	H	L	L	Data Available
L	H	L	NC	NC	No Change in Data
L	H	H	NC	NC	No Change in Data

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L＝LOW Voltage Level
$X=$ Immaterial
Z $=$ High Impedance
$\ulcorner=$ LOW－to－HIGH Transition
$N C=$ No Change

MC74ACT564

FUNCTIONAL DESCRIPTION

The MC74ACT564 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-state complementary outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup
and hold times requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable ($\overline{\mathrm{OE}})$ LOW, the contents of the eight flip-flops are available at the outputs. When $\overline{\mathrm{OE}}$ is HIGH, the outputs go to the high impedance state. Operation of the OE input does not affect the state of the flip-flops.

MAXIMUM RATINGS (Note 1)

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage	-0.5 to +7.0	V
V_{1}	DC Input Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}+0.5$	V
V_{O}	DC Output Voltage (Note 2)	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.5$	\checkmark
IIK	DC Input Diode Current	± 20	mA
IOK	DC Output Diode Current	± 50	mA
Io	DC Output Sink/Source Current	± 50	mA
Icc	DC Supply Current per Output Pin	± 50	mA
IGND	DC Ground Current per Output Pin	± 50	mA
TSTG	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction temperature under Bias	+150	${ }^{\circ} \mathrm{C}$
θ JA	Thermal resistance r PDIP	$\begin{gathered} \hline 67 \\ 96 \\ 128 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
PD	$\begin{array}{lr}\text { Power Dissipation in Still Air at } 85^{\circ} \mathrm{C} & \text { PDIP } \\ \text { SOIC } \\ \text { TSSOP }\end{array}$	$\begin{aligned} & 750 \\ & 500 \\ & 450 \end{aligned}$	mW
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 30\% - 35\%	UL-94-VO (0.125 in)	
$\mathrm{V}_{\mathrm{ESD}}$	ESD Withstand VoltageHuman Body Model (Note 3) Machine Model (Note 4) Charged Device Model (Note 5)	$\begin{aligned} & >2000 \\ & >200 \\ & >1000 \end{aligned}$	V
LLatch-Up	Latch-Up Performance Above V_{CC} and Below GND at $85^{\circ} \mathrm{C}$ (Note 6)	± 100	mA

1. Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Extended exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum-rated conditions is not implied.
2. Io absolute maximum rating must be observed.
3. Tested to EIA/JESD22-A114-A.
4. Tested to EIA/JESD22-A115-A.
5. Tested to JESD22-C101-A.
6. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
V_{CC}	DC Input Voltage (Referenced to GND)	4.5		5.5	V
$V_{\text {in }}, \mathrm{V}_{\text {out }}$	DC Input Voltage, Output Voltage (Referenced to GND)	0		V_{CC}	V
T_{A}	Operating Temperature, All Package Types	-40	25	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	$\begin{array}{ll}\text { Input Rise and Fall Time (Note 8) } & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}\end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 8.0 \end{aligned}$	ns/V
TJ	Junction Temperature (PDIP)			140	${ }^{\circ} \mathrm{C}$
IOH	Output Current - High			-24	mA
l OL	Output Current - Low			24	mA

[^0]DC CHARACTERISTICS

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	Unit	Conditions	
			Typ	Guaranteed Limits				
V_{IH}	Minimum High Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \\ & \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	
VIL	Maximum Low Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \\ & \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	
V_{OH}	Minimum High Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 4.49 \\ & 5.49 \end{aligned}$	4.4	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V	IOUT $=-50 \mu \mathrm{~A}$	
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & \hline 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & { }^{*} \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{IOH} \end{aligned}$	$\begin{aligned} & \hline-24 \mathrm{~mA} \\ & -24 \mathrm{~mA} \end{aligned}$
VOL	Maximum Low Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	V	IOUT $=50 \mu \mathrm{~A}$	
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & { }^{*} \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \text { IOL } \end{aligned}$	$\begin{aligned} & 24 \mathrm{~mA} \\ & 24 \mathrm{~mA} \end{aligned}$
IIN	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$	
$\Delta^{1} \mathrm{CCCT}$	Additional Max. ICC/Input	5.5	0.6		1.5	mA	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$	
IOZ	Maximum 3-State Current	5.5		± 0.5	± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & V_{I}(O E)=V_{I L}, V_{I H} \\ & V_{I}=V_{C C}, G N D \\ & V_{O}=V_{C C}, G N D \end{aligned}$	
$\begin{aligned} & \text { IOLD } \\ & \text { IOHD } \end{aligned}$	\dagger Minimum Dynamic Output Current	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$			$\begin{gathered} 75 \\ -75 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{OLD}}=1.65 \mathrm{~V}$ Max $\mathrm{V}_{\mathrm{OHD}}=3.85 \mathrm{~V}$ Min	
ICC	Maximum Quiescent Supply Current	5.5		8.0	80	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	

*All outputs loaded; thresholds on input associated with output under test. \dagger Maximum test duration 2.0 ms , one output loaded at a time.

AC CHARACTERISTICS $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$ (For Figures and Waveforms, See Figures 4, 5, and 6.)

Symbol	Parameter		$\mathrm{VCC}^{*}(\mathrm{~V})$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Unit
				Min	Typ	Max	Min	Max	
${ }^{\text {f max }}$	Maximum Clock Frequency		5.0	85			75		MHz
tPLH	Propagation Delay	$C P$ to \bar{Q}_{n}	5.0	2.0		10.5	1.5	11.5	ns
tPHL	Propagation Delay	$C P$ to \bar{Q}_{n}	5.0	1.5		9.5	1.5	10.5	ns
tPZH	Output Enable Time		5.0	1.5		9.0	1.5	9.5	ns
tPZL	Output Enable Time		5.0	1.5		8.5	1.0	9.5	ns
tPHZ	Output Disable Time		5.0	1.5		10.5	1.5	11.5	ns
tPLZ	Output Disable Time		5.0	1.5		8.0	1.0	8.5	ns

*Voltage Range 5.0 V is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

AC OPERATING REQUIREMENTS

Symbol	Parameter		$\mathrm{VCC}^{*}(\mathrm{~V})$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Unit	
			Typ	Guaranteed Minimum				
$\mathrm{t}_{\text {s }}$	Setup Time, HIGH or LOW	D_{n} to CP		5.0		2.5	3.0	ns
th	Hold Time, HIGH or LOW	D_{n} to CP_{P}	5.0		1.0	1.0	ns	
t_{w}	C_{P} Pulse Width	HIGH or LOW	5.0		3.0	3.5	ns	

${ }^{*}$ Voltage Range 3.3 V is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.
*Voltage Range 5.0 V is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

CAPACITANCE

Symbol	Parameter	Value Typ	Unit	Test Conditions
$\mathrm{C}_{\text {IN }}$	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	50	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SWITCHING WAVEFORMS

Figure 4.

Figure 5.

Figure 6.

*Includes all probe and jig capacitance

Figure 7. Test Circuit

MC74ACT564

PACKAGE DIMENSIONS

N SUFFIX
PLASTIC DIP PACKAGE
CASE 738-03
ISSUE E

DW SUFFIX
PLASTIC SOIC PACKAGE
CASE 751D-04
ISSUE E

PACKAGE DIMENSIONS

TSSOP-20
DT SUFFIX
20 PIN PLASTIC TSSOP PACKAGE
CASE 948E-02
ISSUE A

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

[^0]: 7. Unused Inputs may not be left open. All inputs must be tied to a high voltage level or low logic voltage level.
 8. $\mathrm{V}_{\text {in }}$ from 0.8 V to 2.0 V ; refer to individual Data Sheets for devices that differ from the typical input rise and fall times.
